A Nuclear Quadrupole Resonance and X-ray Study of the Crystal Structure of Tetrachloro-Hydroquinone

By Tosio Sakdrat
The Crystallography Laboratory and the Radiation Laboratory, University of Pittsburgh, Pittsburgh 13, Pa., U.S.A.

(Received 24 January 1961 and in revised form 26 July 1961)

Abstract

The crystal structure of the tetrachloro-hydroquinone $\mathrm{C}_{6} \mathrm{Cl}_{4}(\mathrm{OH})_{2}$ was solved directly, by the application of the nuclear quadrupole resonance methods and the parameters were refined by X-ray diffraction data. The crystal is monoclinic $P 2_{1} / c$ with two centro-symmetrical molecules in a unit cell. The molecules is almost planar except for the hydrogen atoms and the angular distortions of the $\mathrm{C}-\mathrm{Cl}$ bonds out of the plane of the benzene ring ure less than 1°. The carbon ring is intermediate in dimensions between benzenoid and quinoid.

The two shortest intermolecular distances are $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=2 \cdot 92 \AA$, and $\mathrm{O} \cdots \mathrm{Cl}=3 \cdot 29 \AA$. The former corresponds to an unusually long hydrogen bond and the latter to a shorter than normal van der Waals approach. The position of the hydrogen atom suggests that this may be due to the formation of a bifurcated hydrogen bond system in the crystal structure.

Introduction

This paper is a part of the series of investigations making use of both nuclear quadrupole resonance (n.q.r.) and X-ray diffraction for the crystal structure determination. The principle of the n.q.r. method was explained in the first paper on the crystal structure of 1,2,4,5-tetrachlorobenzene by Dean, Pollak, Craven \& Jeffrey (1958).

In the present paper, the combined techniques have been applied systematically for a direct solution of the structure analysis, from the n.q.r. data followed by three-dimensional isotropic Fourier refinement.

Crystal data

Fisher's highest purity grade $\mathrm{C}_{6} \mathrm{Cl}_{4}(\mathrm{OH})_{2}$ was purified by recrystallization from alcoholic solution. The crystals are monoclinic, with space group $P 2_{1} / \mathrm{c}$ and cell dimensions,

$$
\begin{aligned}
a & =8 \cdot 214 \pm 0 \cdot 017 \AA \\
b & =4 \cdot 843 \pm 0 \cdot 010 \AA \\
c & =12 \cdot 441 \pm 0 \cdot 025 \AA \\
\beta & =123^{\circ} 49^{\prime} \pm 10^{\prime}, V=411 \cdot 2 \pm 3 \cdot 0 \AA^{3} \\
D_{m} & =1 \cdot 996 \mathrm{~g} . \mathrm{cm} .-3, D_{x}=2 \cdot 001 \pm 0 \cdot 015 \mathrm{~g} . \mathrm{cm} .^{-3} \\
Z & =2 ; \text { molecular symmetry } \overline{\mathrm{I}} .
\end{aligned}
$$

The molecular symmetry was confirmed by the observation of a pure quadrupole resonance of Cl^{35} consisting of two lines of frequencies 36.74 and 36.96 $\mathrm{mc} . \mathrm{sec}^{-1}$ at room temperature.

Experimental

For the n.q.r. analysis a single crystal was carefully grown by slow evaporation of alcoholic solution. The crystal was a light brown color of parallelepiped shape
elongated along the b axis. The clear cleavage faces were $\{100\}$ and $\{10 \overline{2}\}$. The crystal dimensions were $15 \times 6 \times 6 \mathrm{~mm} .^{3}$ and the oscillator coil was wound directly around it. The diameter of the wire used was about 0.3 mm . and number of turns was 8 . The n.q.r. spectrometer was almost the same as that described by Dean (1960). The crystal is suspended by two circular plates, by means of which its orientation could be varied in any direction. The experimental observations were concerned with locating the magnetic zero splitting loci in the presence of a weak magnetic field.

The intensity data for the X-ray analysis were obtained from multiple Weissenberg photographs with $\mathrm{Cu} K \alpha$ radiation of the zero to the 3 rd layer of the b axis. The linear absorption coefficient for this crystal is $120 \mathrm{~cm} .^{-1}$ for $\mathrm{Cu} K \alpha$. Therefore in order to reduce the absorption errors, a thin well shaped crystal was selected with an approximately rectangular cross section, $0.08 \mathrm{~mm} . \times 0.05 \mathrm{~mm}$. A cylindrical shape absorption correction with the mean crystal diameter of 0.065 mm . was applied. For many higher angle reflections, the $K \alpha_{1}$ and the $K \alpha_{2}$ spectra were completely resolved. For these reflections, the intensity for $K \alpha_{1}$ was measured and a correction factor of 1.5 was applied. For intermediate reflections, where the separation was incomplete and a line broadening was observed, the correction factor was assumed to have the value $1+0.5\left(\theta_{B}-\theta_{0}\right) /\left(\theta_{S}-\theta_{0}\right)$ where θ_{B} is the Bragg angle of the reflection, θ_{s} is the lowest angle at which complete $\alpha_{1} \alpha_{2}$ resolution was observed and θ_{0} is the highest angle at which the resolution was not observed. After these corrections the intensities were reduced to structure amplitudes by the ordinary Lorentz and polarization corrections. The scale factor for each layer was obtained at a later stage in the analysis by comparing with the calculated structure factors.

Determination of the structure

In order to analyze the n.q.r. data, three coordinate systems were defined.
(1) The spectrometer coordinates which are associated with the n.q.r. spectrometer.
(2) The bond coordinates, X_{b}, Y_{b} and Z_{b} which coincide with the principal axis of the field gradient tensor around each nucleus.
(3) The molecular coordinates, L, M and N which are characteristic of the molecule and are defined as in Fig. 1.

Fig. 1. The molecular structure.
N axis is perpendicular to the plane of the molecule.
The magnetic zero splitting loci was observed with respect to the spectrometer coordinate, and plotted on the surface of a unit sphere. In the presence of the weak magnetic field, the loci have an elliptic shape. For the nucleus with spin $3 / 2$ these will be expressed by the formula $\sin ^{2} \theta_{b}=2 /\left(3-\eta \cos 2 \varphi_{b}\right)$ where θ_{b} and φ_{b} are the polar and the aximuthal angle of the bond coordinate, and η is an asymmetry parameter of the field gradient (Das \& Hahn, 1958). The transformation matrices between the spectrometer coordinate and bond coordinates must be such that the observed points along the loci agree with the above formula. The actual calculation was done in the following steps. First, the best fit plane through the observed points on the unit circle was obtained and the approximate z_{b} axis was taken as the normal to this plane. The x, y coordinates of the locus in the bond coordinate system become an ellipse and the X_{b} and Y_{b}
axes were taken as the principal axes of this ellipse. Finally, the directions of the bond coordinates and η were refined by least-square method to get the best fit with the above formula. Z_{b} was assigned to the σ bond and X_{b} was assumed to be the π bond directions. For each frequency, two different loci were observed. These loci were related by mirror symmetry. Therefore, the b axis of the crystal was obtained with respect to the spectrometer axis. Cl_{1} corresponds to the low frequency and Cl_{2} corresponds to the high frequency. The bond orientation data is given in Table 1. The standard deviation for the σ bonds is 1° and for the π bonds it is 1.4°.

Table 1. Comparison between n.q.r. and X-ray bond orientation data

Angle between	n.q.r.	X-ray
b axis and $\mathrm{Cl}_{1} \sigma$ bond	$48 \cdot \cdot^{\circ}$	$50 \cdot 3^{\circ}$
b axis and $\mathrm{Cl}_{2} \sigma$ bond	$56 \cdot 6^{\circ}$	$56 \cdot 6^{\circ}$
$\mathrm{Cl}_{1} \sigma$ bond and $\mathrm{Cl}_{2} \sigma$ bond	$61 \cdot 2^{\circ}$	$62 \cdot 4^{\circ}$
$\mathrm{Cl}_{1} \pi$ bond and $\mathrm{Cl}_{2} \pi$ bond	$8 \cdot 0^{\circ}$	

The non-unique crystallographic axes were not obtained directly from the n.q.r. observations. However, since the crystal had distinct cleavage planes, these axes could be determined approximately with respect to the spectrometer coordinate. There is no exact way to determine the direction of the molecular coordinates. However, a recent study of a related molecule (Dean, Richardson \& Sakurai, 1961) suggests that, in spite of the existence of the ortho neighbour to the chlorine atoms, the molecule will be almost planar and that the angular distortion will be small. Therefore it was assumed that the molecular axis N is perpendicular to the two bonds and that the M and L axes bisect the obtuse and acute angles of the two bonds respectively. The coordinates of the atoms in the crystal were also obtained by the assumption that the bond angles are all 120° and the $\mathrm{C}-\mathrm{C}$, $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{O}$ distances are $1.38,1.70$ and $1.43 \AA$ respectively. The resulting atomic coordinates are shown in Table 2. For convenience of calculation,

Table 2. Parameters deduced directly from n.q.r. data
Approximate direction cosines between molecular axes

	a^{\prime}	b	c
L	-0.153	-0.701	0.695
M	0.988	$-0 \cdot 116$	$0 \cdot 100$
N	$0 \cdot 010$	$0 \cdot 702$	0.712
Approximate atomic coordinates			
	x	y	z
Cl_{1}	0•162	-0.423	0.219
Cl_{2}	-0.280	-0.351	0.031
C_{1}	$0 \cdot 073$	$-0 \cdot 190$	0.099
C_{2}	-0.126	-0.157	0.014
C_{3}	$0 \cdot 198$	-0.033	0.084
0	$0 \cdot 402$	-0.066	$0 \cdot 170$
Asymmetry parameter η is			
0.09 ± 0.03 for Cl_{1} and 0.13 ± 0.03 for Cl_{2}.			

the direction cosines are taken with respect to the a^{\prime}, b and c axes, where a^{\prime} is in the $a c$ plane and perpendicular to the c axis.

From these coordinates the crystal structure factors were calculated to give a first reliability factor of $R=0 \cdot 36$. Successive refinement of the coordinates and isotropic temperature factor by differential Fourier synthesis reduced the R factor to $0 \cdot 17$, and established that the correct solution to the phase problem had been obtained from the n.q.r. measurements. The hydrogen position was deduced from a difference Fourier synthesis which showed one peak near the oxygen which was assigned to the hydrogen atom. The atomic parameters are given in Table 3. The standard deviations of the atomic coordinates were calculated by Cruickshank's formula (1954). The larger standard deviations along the b axis are due to the limitation of the observed data in that direction. Comparison of these coordinates with those in Table 2 shows that the n.q.r. technique gave a very good first approximation to the structure.

Table 3. Atomic coordinates and isotropic temperature factors

	x	y	z	B
Cl_{1}	0.1520	-0.4172	0.2264	3.70
Cl_{2}	-0.3009	-0.3516	0.0176	3.70
C_{1}	0.0624	-0.187	0.0975	3.04
C_{2}	-0.1329	-0.156	0.0096	3.04
C_{3}	0.2001	-0.030	0.0915	3.04
O	0.3944	-0.0539	0.1803	4.00
H	0.53	0.06	0.28	-

Standard deviations of the atomic coordinates

	a	b	c
	a	c	
Cl	$0.004 \AA$	$0.006 \AA$	$0.004 \AA$
C	0.013	0.019	0.014
O	0.010	0.014	0.012

For this type of molecule, the temperature factor will be mainly due to the rigid body vibrations (Cruickshank, 1956a). At the isotropic stage of an analysis, rotational vibration cannot be considered correctly. However, their magnitude can be estimated in the following way. The mean square displacement (m.s.d.) of atom $\overline{u^{2}}$ is approximately written in the form

$$
\overline{u^{2}}=\overline{u_{t}^{2}}+\overline{u_{t}^{2}}=\overline{u_{t}^{2}}+\overline{2 k^{2}} r^{2}
$$

where $\overline{u_{t}^{2}}$ is the m.s.d. due to the translational vibration, $\overline{u_{r}^{2}}$ is that due to the rotational vibration, r is the distance of the atom from the center of gravity of the molecule and k is the angle of rotational vibration. From temperature factors shown in Table 3, these values could be obtained and it was found that $\left(\overline{u_{t}^{2}}\right)^{\frac{1}{2}}=0.191 \AA,\left(\overline{k^{2}}\right)^{\frac{1}{2}}=1 \cdot 4^{\circ}$. The bond length corrections due to this rotational motion (Cruickshank, 1956b) are 0.0009 and $0.0011 \AA$ for $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Cl}$ bond respectively. They are not included in the bond length calculations since they are negligible compared with the standard deviations.

Table 4. Interatomic distances and valency angles*

Intramolecular distances		Intermolecular distances	
$\mathrm{C}_{1}-\mathrm{C}_{2}$	$1 \cdot 357$ A	$\mathrm{O}-\mathrm{O}^{\prime}$	$2.921 \AA$
$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.400	$\mathrm{O}-\mathrm{Cl}_{1}{ }^{\prime}$	3.294
$\mathrm{C}_{3}-\mathrm{C}_{1}$	1.386	$\mathrm{O}_{+}{ }^{\prime}-\overline{\mathrm{Cl}_{2}}$	3.520
$\mathrm{C}_{1}-\mathrm{Cl}_{1}$	I.743	$\mathrm{O}_{+}{ }^{\prime}-\mathrm{H}$	1.9
$\mathrm{C}_{2}-\mathrm{Cl}_{2}$	I.722	$\mathrm{Cl}_{1}{ }^{\prime}-\mathrm{H}$	$2 \cdot 6$
$\mathrm{C}_{3}-\mathrm{O}$	I-349	$\mathrm{Cl}_{2}-\mathrm{H}^{\prime}$	$2 \cdot 7$
$\mathrm{O}-\mathrm{H}$	I-2	$\mathrm{Cl}_{1}-\mathrm{Cl}_{2}{ }^{\prime \prime}$	3.425
Bond angles		$\mathrm{Cl}_{1}-\mathrm{Cl}_{2+}{ }^{\prime \prime}$	3.848
		$\mathrm{Cl}_{1}-\mathrm{Cl}_{1}{ }^{\prime \prime}$	3.752
$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{3}$	$121.6{ }^{\circ}$	$\mathrm{Cl}_{1}{ }^{\prime}-\mathrm{Cl}_{2}$	4.110
$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	120.0	$\mathrm{Cl}_{2}-\mathrm{Cl}_{2}{ }^{\prime \prime \prime}$	3.371

$\overline{\mathrm{C}_{2}}-\mathrm{C}_{3}-\mathrm{C}_{1}$	$118 \cdot 4$
$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{Cl}_{1}$	$121 \cdot 2$
$\mathrm{C}_{3}-\mathrm{C}_{1}-\mathrm{Cl}_{1}$	$117 \cdot 2$
$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{Cl}_{2}$	$121 \cdot 2$
$\overline{\mathrm{C}_{3}}-\mathrm{C}_{2}-\mathrm{Cl}_{2}$	$118 \cdot 9$
$\mathrm{C}_{1}-\mathrm{C}_{3}-\mathrm{O}$	$122 \cdot 1$
$\overline{\mathrm{C}_{2}}-\mathrm{C}_{3}-\mathrm{O}$	119.4
$\mathrm{C}_{3}-\mathrm{O}-\mathrm{H}$	143

Intermolecular angles	
$\mathrm{C}_{3}-\mathrm{O} \cdots \mathrm{O}_{+}{ }^{\prime}$	117.1°
$\mathrm{C}_{3}-\mathrm{O} \cdots \mathrm{O}^{\prime}$	126.8
$\mathrm{O}_{+}{ }^{\prime} \cdots \mathrm{O} \cdot \mathrm{O}^{\prime}$	111.8
$\mathrm{C}_{3}-\mathrm{O} \cdots \mathrm{Cl}_{1}{ }^{\prime}$	162.4

Standard deviations	
$\mathrm{C}-\mathrm{C}$	$0.021 \AA$
$\mathrm{C}-\mathrm{Cl}$	0.016
$\mathrm{C}-\mathrm{O}$	0.019
$\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle	1.4°
$\mathrm{C}-\mathrm{C}-\mathrm{Cl}$	1.1
$\mathrm{C}-\mathrm{C}-\mathrm{O}$	1.4

* The subscript of the atom corresponds to that in Figs. 2 and 3.
,+- mean $+\frac{1}{2}$ and $-\frac{1}{2}$ of y coordinates.
The interatomic distances and valency angles are listed in Table 4. The calculated and observed structure factors are shown in Table 5 . The hydrogen atoms are not included in this calculation. The IBM 650 programs of Shiono (1957, 1959, 1960) were used for the computations.

Discussion of the structure

The arrangement of the molecule in the crystal is shown in Fig. 2 and 3. The direction cosines of the molecular axes are shown in Table 6.

The molecular plane makes an angle of 44.8° with ac plane. The distance between the two oxygen atoms of adjacent molecules related by the two-fold screw axis is $2.92 \AA$. Therefore if a hydrogen bond exists between these oxygen atoms, the hydrogen bond system makes a zigzag chain about two-fold axis. However, this distance is considerably longer than the averaged hydrogen bond length of $2.67 \AA$ for many phenols (Pimentel \& McClellan, 1960). On the other hand, the shortest intermolecular oxygen chlorine distance is $3.29 \AA$ between O and Cl_{1}^{\prime}, which is shorter than the $3.6 \AA$ which would be expected from a van der Waals $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ contact distance. Since the hydrogen atom lies between the lines $0 \cdots O^{\prime}$

Table 5. Observed and calculated structure factors

Table 6. Direction cosines of molecular axes

	a^{\prime}	b	c
L	-0.201	-0.694	0.691
M	0.982	-0.108	0.155
N	-0.035	0.710	0.703

and $\mathrm{O} \cdots \mathrm{Cl}_{1}^{1}$, it is possible that a weak bifurcated hydrogen bond might exist between $\mathrm{O}-\mathrm{H}$ and O, Cl. The distances between the hydrogen and chlorine atoms of the same molecule are 3.8 and $3.4 \AA$ respectively, and a intramolecular hydrogen bond is not possible.

The pure n.q.r. frequency difference between two nuclei is about $220 \mathrm{~kg} . c a l$. This separation is considerably larger than the corresponding separation in

1,2,4,5-tetrachlorobenzene. However, the non-linear response of the super-regenerative oscillator prevent the detailed study of the line width, and any positive evidence of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond was not available from the present n.q.r. observations.

The intermolecular $0-\mathrm{H} \cdots \mathrm{Cl}_{2}$ distance, $3.52 \AA$ corresponds to a normal van der Waals distance. Some of the intermolecular $\mathrm{Cl} \cdots \mathrm{Cl}$ distances are considerably shorter than the normal van der Waals separation of $3.6 \AA$.
Within the experimental error, the molecule has $D_{2 h}$ symmetry except for the hydrogen atoms. The mean $\mathrm{C}-\mathrm{Cl}$ bond length $=1.73 \AA$, mean $\mathrm{C}-\mathrm{C}=1.39 \AA$, $\mathrm{C}=\mathrm{C}=1.36 \AA, \mathrm{C}-\mathrm{O}=1.35 \AA$. The molecular dimen-

Fig. 2. The molecular arrangement in the crystal. Projection on (010).

Fig. 3. The molecular arrangement in the crystal. Projection on ($10 \overline{2}$) along the c axis.
sions are shown in Fig. 1. The carbon atoms form a slightly deformed hexagon, the equation to the plane of which was obtained by least-square method and is $-0.035 X+0.710 Y+0.703 Z=0$ with respect to the orthogonal a^{\prime}, b, c axes. The deviation of carbon atoms from this plane is $0.006 \AA$, which is within the standard deviations. The $\mathrm{C}-\mathrm{Cl}$ bond directions deviate 0.8° from this plane, one is up and another is down. The $\mathrm{C}-\mathrm{O}$ bond also makes an 0.9° from the carbon plane in the same direction as neighboring chlorine atoms. However, from the standard deviation of the angles, this out-of-plane bending is not significant and within the accuracy of this analysis the molecule is planar. This conclusion adds further support for the nonexistence of overcrowding in chlorine substituted benzene and benzoquinone derivatives, as recently discussed by many authors (Gafner \& Herbstein, 1958, 1960; Coulson \& Stocker, 1959; Dean, Richardson \&

Sakurai, 1961). The C-O bond length of $1.35 \AA$ agrees with those obtained for resorcinol (Robertson, 1936; Bacon \& Curry, 1956) and hydroquinone clathrates (Palin \& Powell, 1947). However, this is considerably shorter than the single bond length $1.43 \AA$ and will have more than 40% double bond character. The $\mathrm{C}-\mathrm{Cl}$ bonds also have a small degree of double bond character which is estimated to be 5% from the observed n.q.r. asymmetry parameter. The π electrons will therefore be more localized in the $\mathrm{C}-\mathrm{O}$ bonds than in the $\mathrm{C}-\mathrm{Cl}$ bonds, and the $\mathrm{C}_{1}-\mathrm{C}_{3}$ and $\mathrm{C}_{2}-\mathrm{C}_{3}$ bonds have more single bond character than $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond. This agrees with the observed difference between these bond lengths, which indicates a carbon ring intermediate in character between benzenoid and the pure quinoid as found in tetrachloro p-benzoquinone.

The author expresses his sincere thanks to Prof. G. A. Jeffrey for his critical reading of the manuscript, to Dr C. Dean for his encouragement, to Dr R. Shiono and the computing center of this University for their aid for the computations. This work was supported by a research grant, G-10119 from the National Science Foundation.

References

Bacon, G. E. \& Curry, N. A. (1956). Proc. Roy. Soc. A, 235, 552.
Coulson, C. A. \& Stocker, D. (1959). Mol. Phys. 2, 397. Cruickshank, D. W. J. (1954). Acta Cryst. 7, 519.
Cruickshank, D. W. J. (1956a). Acta Cryst. 9, 915. Cruickshank, D. W. J. (1956b). Acta Cryst. 9, 757.
Das, T. P. \& Hahn, E. L. (1958). Solid State Physics, Supple. 1.
Dean, C. (1960). Rev. Sci. Instrum. 31, 934.
Dean, C., Pollak, M., Craven, B. M. \& Jeffrey, G. A. (1958). Acta Cryst. 11, 710.

Dian, C., Richardson, C. \& Sakurai, T. (1961). Mol. Phys. 4, 95.
Gafner, G. \& Herbstein, F. H. (1958). Mol. Phys. 1, 412.
Gafner, G. \& Herbstein, F. H. (1960). Acta Cryst. 13, 706.
Palin, D. E. \& Powell, H. M. (1947). J. Chem. Soc., p. 208.

Pimentel, G. C. \& McClellan, A. L. (1960). The Hydrogen Bond. New York: Freeman.
Robertson, J. M. (1936). Proc. Roy. Soc. A, 157, 79.
Shiono, R. (1957). Tech. Report No. 2, Computation and Data Processing Center and the Crystallography Laboratory, University of Pittsburgh.
Shiono, R. (1959). Tech. Report No. 9, Computation and Data Processing Center and the Crystallography Laboratory, University of Pittsburgh.
Shiono, R. (1960). Tech. Report No. 16, Computation and Date Processing Center and the Crystallography Laboratory, University of Pittsburgh.

